

Bio-integrated Materials Science (Online Lectures)

Crystal systems, Point coordinates, Crystallographic directions

Lecture 3

Prof. Jung Heon Lee

Crystal Systems

Unit cell: smallest volume which volume the complete lattice pattern of a crystal.

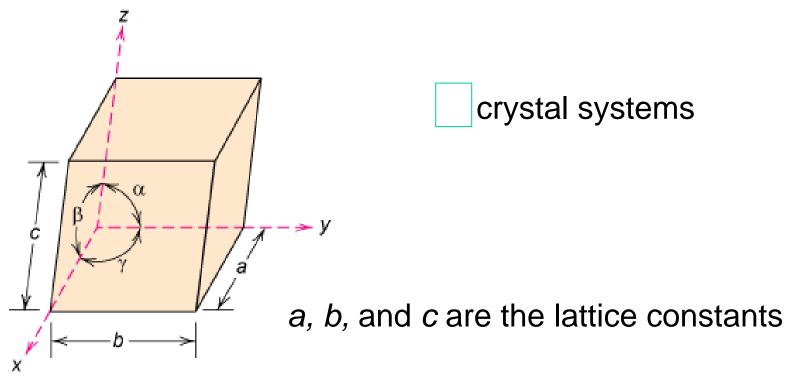
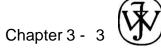


Fig. 3.20, Callister & Rethwisch 4e.



Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	
Hexagonal	$a = b \neq c$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	
Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	c a a
Rhombohedral (Trigonal)	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$	a a a

Table 3.6 Lattice Parameter Relationships and Figures Showing Unit Cell Geometries for the Seven Crystal Systems

Table 3.6 part 1

© John Wiley & Sons, Inc. All rights reserved.

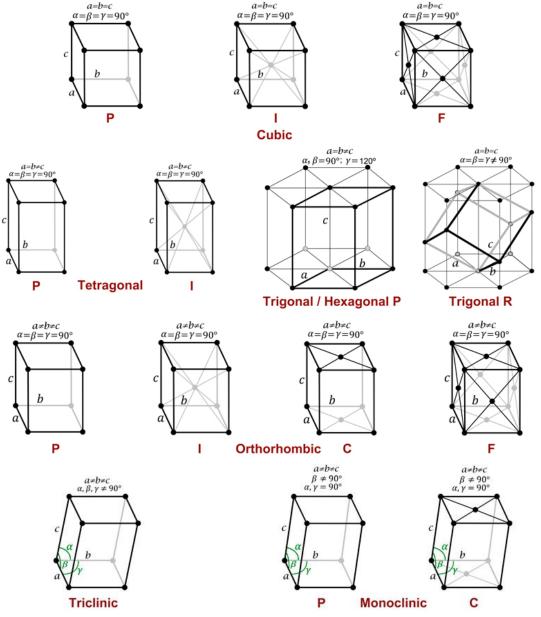
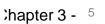

Jeve	ii Crystal Systems		
Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry
Orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	c a b
Monoclinic	$a \neq b \neq c$	$\alpha = \gamma = 90^{\circ} \neq \beta$	
Triclinic	$a \neq b \neq c$	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	

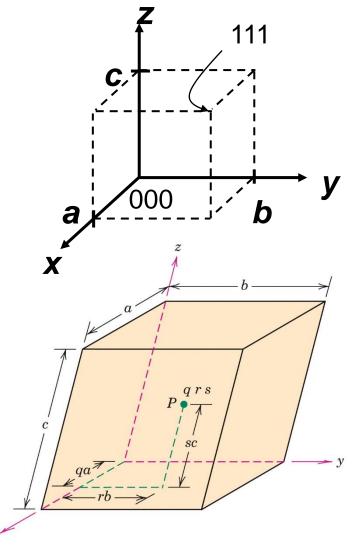
 Table 3.6
 Lattice Parameter Relationships and Figures Showing Unit Cell Geometries for the Seven Crystal Systems

Table 3.6 part 2


© John Wiley & Sons, Inc. All rights reserved.

14 Bravais lattices

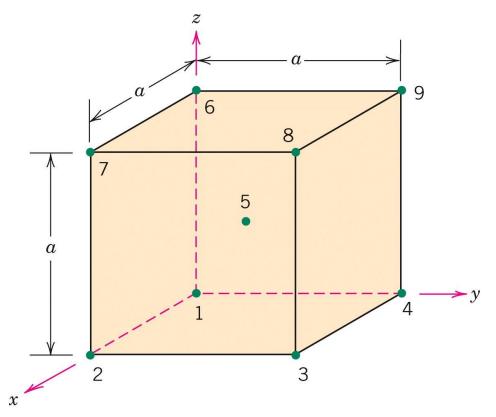
Symbols P C I F R refer to the different lattice types:


- P = primitive (there is only one reticular point inside the cell (1 point in each of the 8 corners of the cell means 8/8=1 points in the cell)
- C = centered in the faces perpendicular to the cell c axis (+ 1/8 of reticular point in each corner)
- I = centered in the body of the cell (+ 1/8 of reticular point in each corner)
- F = centered in all faces of the cell (+ 1/8 of reticular point in each corner)
- R = primitive, identical cell axes and cell angles, or hexagonal two times body centered (+ 1/8 of reticular point in each corner)

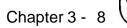
Pin u Bravais lattice cells	Axes and interaxial angles	Examples
Cubic P Cubic I Cubic F	Three axes at right angles; all equal: $a = b = c; \alpha = \beta = \gamma = 90^{\circ}$	Copper (Cu), silver (Ag), sodium chloride (NaCl)
Tetragonal P Tetragonal I X	Three axes at right angles; two equal: $a = b \neq c; \ \alpha = \beta = \gamma = 90^{\circ}$	White tin (Sn), rutile (TiO ₂), β-spodumene (LiAlSi ₂ O ₆)
P C I F Orthorhombic	Three axes at right angles; all unequal: $a \neq b \neq c$; $\alpha = \beta = \gamma = 90^{\circ}$	Gallium (Ga), perovskite (CaTiO ₃)
Monoclinic P Monoclinic C	Three axes, one pair not at right angles, of any lengths: $a \neq b \neq c$; $\alpha = \gamma = 90^{\circ} \neq \beta$	Gypsum (CaSO ₄ • 2H ₂ O)
Triclinic P	Three axes not at right angles, of any lengths: $a \neq b \neq c; \alpha \neq \beta \neq \gamma \neq 90^{\circ}$	Potassium chromate (K ₂ CrO ₇)
Trigonal R (rhombohedral)	Rhombohedral: three axes equally inclined, not at right angles; all equal: $a = b = c$; $\alpha = \beta = \gamma \neq 90^{\circ}$	Calcite (CaCO ₃), arsenic (As), bismuth (Bi)
Trigonal and hexagonal C (or P)	Hexagonal: three equal axes coplanar at 120°, fourth axis at right angles to these: $a_1 = a_2 = a_3 \neq c;$ $\alpha = \beta = 90^\circ, \gamma = 120^\circ$	Zinc (Zn), cadmium (Cd), quartz (SiO ₂) [P]

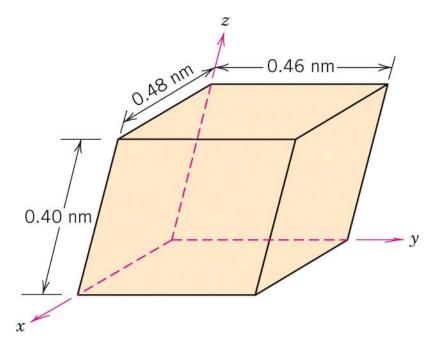
apter 3 - 6

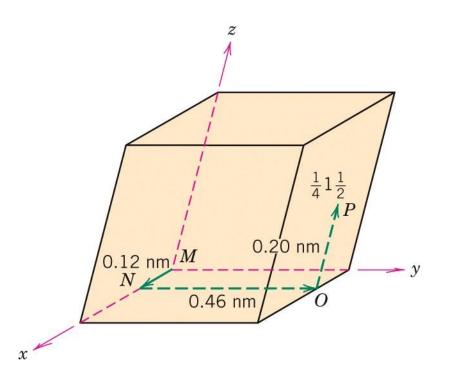
Point Coordinates


Point coordinates for unit cell center are

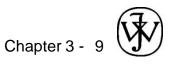
Point coordinates for unit cell corner are


Translation: integer multiple of lattice constants → identical position in another unit cell

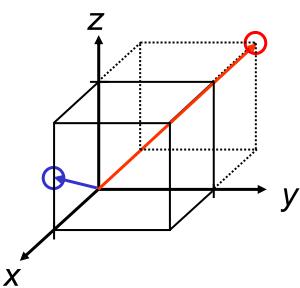



Unnumbered 3 p65b © John Wiley & Sons, Inc. All rights reserved.

Point Number	Fractional Lengths			Point
	x axis	y axis	z axis	Coordinates
1	0	0	0	0 0 0
2	1	0	0	100
3	1	1	0	
4	0	1	0	
5	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	
6	0	0	1	
7	1	0	1	
8	1	1	1	
9	0	1	1	

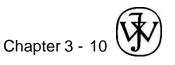


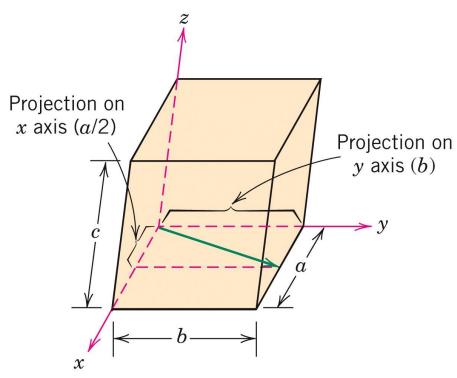
Unnumbered 3 p66 © John Wiley & Sons, Inc. All rights reserved.

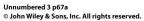


Unnumbered 3 p65a © John Wiley & Sons, Inc. All rights reserved.

Crystallographic Directions


Algorithm


- 1. Vector repositioned (if necessary) to pass through origin.
- 2. Read off projections in terms of unit cell dimensions *a*, *b*, and *c*
- 3. Adjust to smallest integer values
- 4. Enclose in square brackets, no commas [*uvw*]


ex: 1, 0, ½ => 2, 0, 1 =>

where overbar represents a negative index

families of directions <uvv>

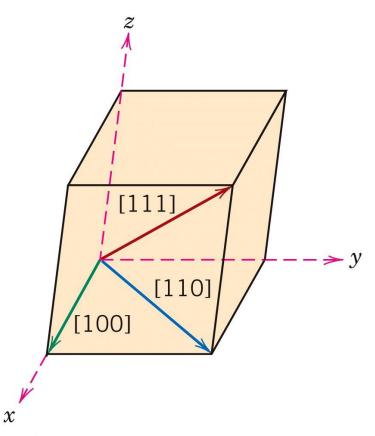
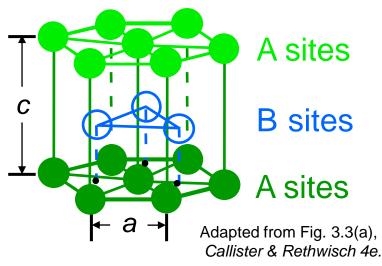



Figure 3.22 © John Wiley & Sons, Inc. All rights reserved.

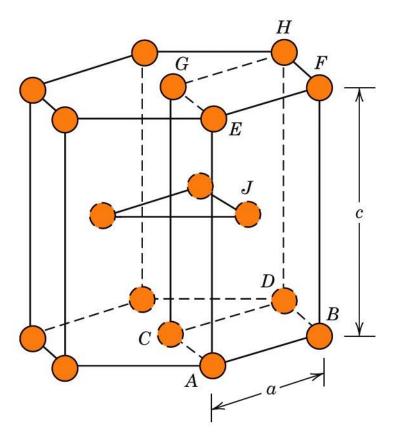
Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence
- 3D Projection

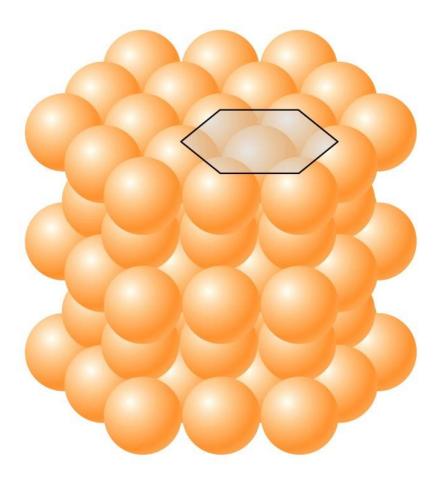
- Coordination # = 12
- APF = 0.74
- *c*/*a* = 1.633

Bottom layer

6 atoms/unit cell

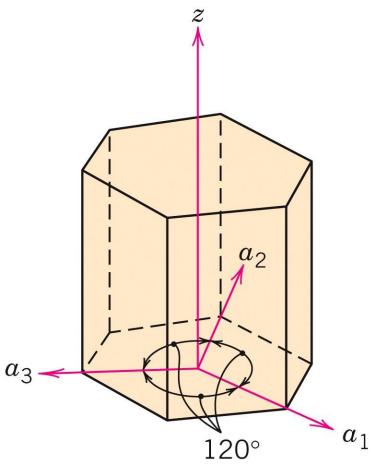

2D Projection

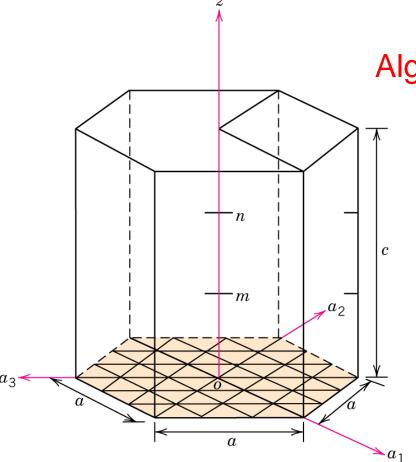
ex: Cd, Mg, Ti, Zn


Top layer

Middle layer

HCP Crystals




Figure 3.23 © John Wiley & Sons, Inc. All rights reserved.

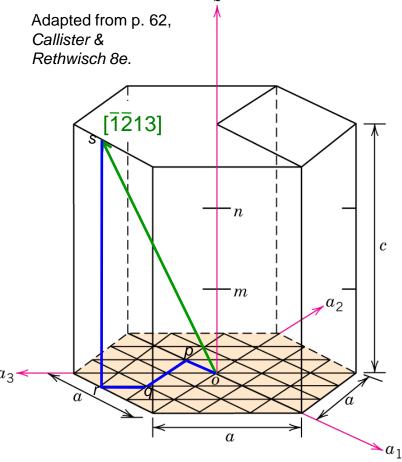
Coordinate axis system for a hexagonal unit cell (Miller–Bravais scheme)

- A four-axis (*Miller–Bravais*) coordinate system is used for hexagonal unit cell
- The three a₁, a₂, and a₃ axes are all contained within a single (basal) plane
- The z axis is perpendicular to this basal plane.
- Directional indices, which are obtained as described above, will be denoted by four indices, as [uvtw].

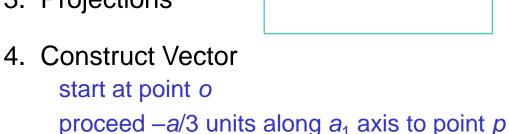
$$\begin{bmatrix} u'v'w' \end{bmatrix} \longrightarrow \begin{bmatrix} uvtw \end{bmatrix}$$
$$u = \frac{1}{3}(2u' - v')$$
$$v = \frac{1}{3}(2v' - u')$$
$$t = -(u + v)$$
$$w = w'$$
Chapter 3 - 14

Drawing HCP Crystallographic Directions (i)

Adapted from Figure 3.25, *Callister & Rethwisch 4e.*


Algorithm (Miller-Bravais coordinates)

- 1. Remove brackets
- Divide by largest integer so all values are ≤ 1
- 3. Multiply terms by appropriate unit cell dimension a (for a_1 , a_2 , and a_3 axes) or c (for *z*-axis) to produce projections
- 4. Construct vector by stepping off these projections


Determination of HCP Crystallographic Directions (ii)

• Draw the 1213] direction in a hexagonal unit cell.

Algorithm

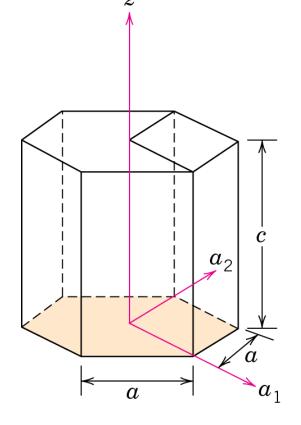
- 1. Remove brackets
- 2. Divide by 3
- 3. Projections

 a_3

Ζ

 a_2

-2a/3 units parallel to a_2 axis to point pa/3 units parallel to a_3 axis to point rc units parallel to z axis to point s


a₁

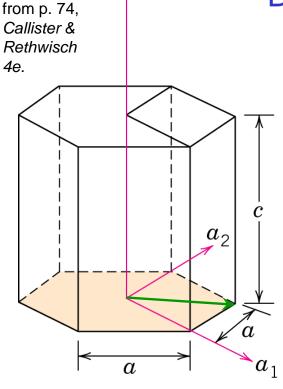
 $[\bar{1}\bar{2}13]$ direction represented by vector from point *o* to point *s*

Chapter 3 - 1

Determination of HCP Crystallographic Directions (ii)

Adapted from p. 74, *Callister & Rethwisch 4e.*

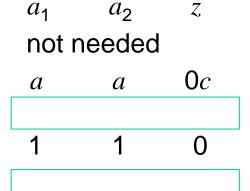
Algorithm


- 1. Vector repositioned (if necessary) to pass through origin.
- 2. Read off projections in terms of threeaxis (a_1 , a_2 , and z) unit cell dimensions a and c
- 3. Adjust to smallest integer values
- Enclose in square brackets, no commas, for three-axis coordinates [u'v'w']
- 5. Convert to four-axis Miller-Bravais lattice coordinates using equations below:

$$u = \frac{1}{3} (2u (1 - v (1))) \quad v = \frac{1}{3} (2v (1 - u (1)))$$
$$t = -(u + v) \quad W = W (1 - u (1))$$

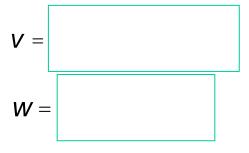
6. Adjust to smallest integer values and enclose in brackets [*uvtw*]

Determination of HCP Crystallographic Directions (ii)



Adapted

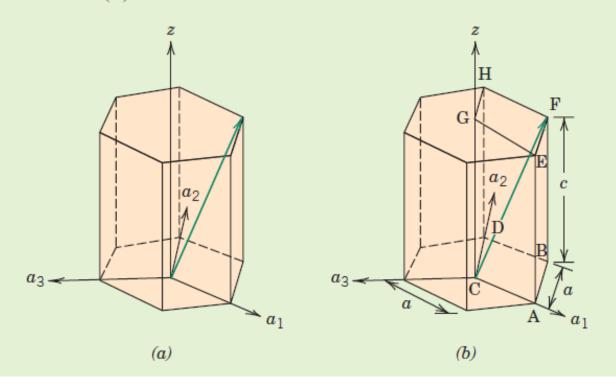
Determine indices for green vector


Example

- 1. Reposition
- 2. Projections
- 3. Reduction
- 4. Brackets

5. Convert to 4-axis parameters

6. Reduction & Brackets



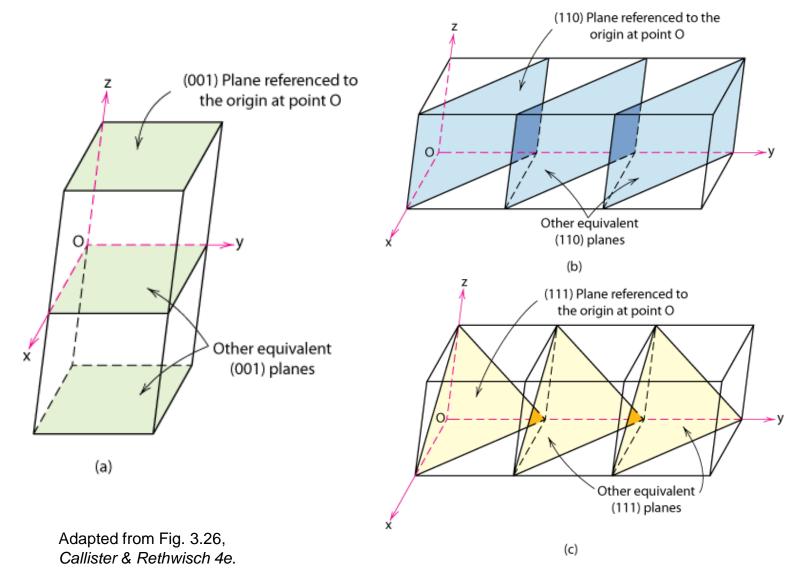
Determination of Directional Indices for a Hexagonal Unit Cell

Determine the indices for the direction shown in the hexagonal unit cell of sketch (a) below.

Solution

In sketch (*b*), one of the three parallelepipeds comprising the hexagonal cell is delineated—its corners are labeled with letters A through H, with the origin of the a_1 - a_2 - a_3 -z axes coordinate system located at the corner labeled C. We use this unit cell as a reference for specifying the directional indices. It now becomes necessary to determine projections of the direction vector on the a_1 , a_2 , and z axes. These respective projections are a (a_1 axis), a (a_2 axis) and c (z axis), which become 1, 1, and 1 in terms of the unit cell parameters. Thus,

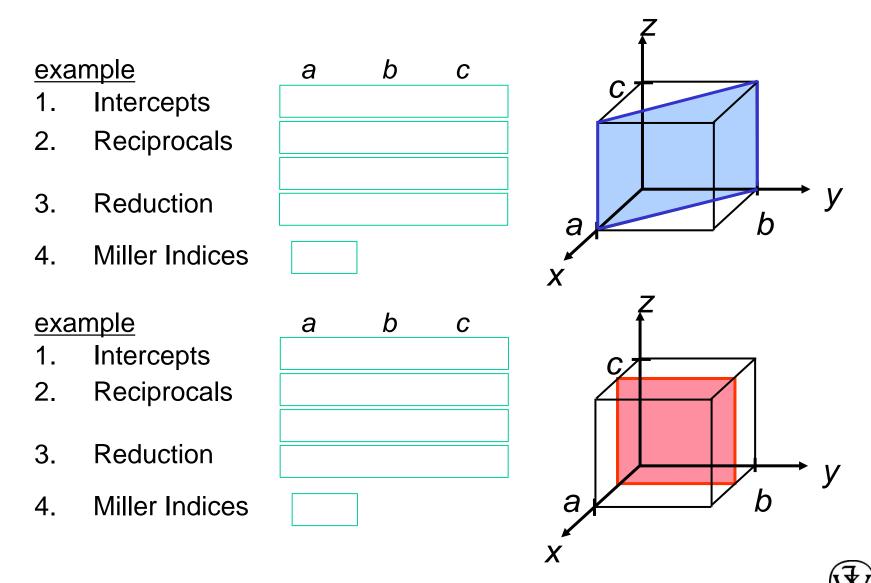
Also, from Equations 3.6a, 3.6b, 3.6c, and 3.6d

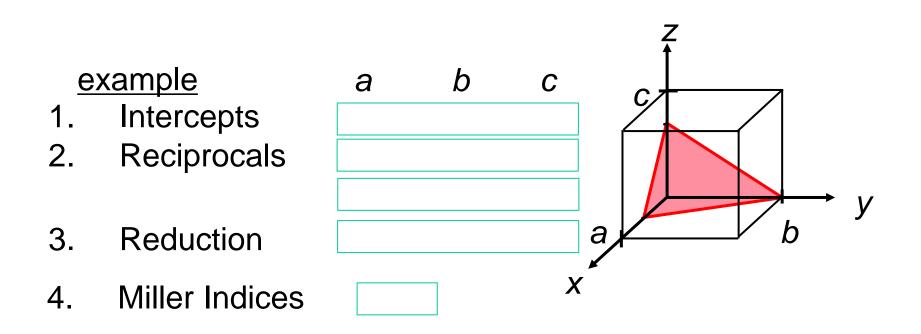

$$u = \frac{1}{3}(2u' - v') =$$

$$v = \frac{1}{3}(2v' - u') =$$

$$t = -(u + v) =$$

$$w = w' =$$

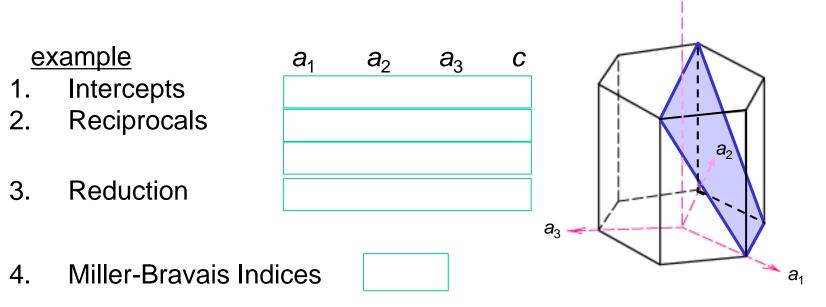

Multiplication of the above indices by 3 reduces them to the lowest set, which yields values for u, v, t, and w of 1, 1, -2 and 3, respectively. Hence, the direction shown in the figure is


Chapter 3 - 2

- Miller Indices: Reciprocals of the (three) axial intercepts for a plane, cleared of fractions & common multiples. All parallel planes have same Miller indices.
- Algorithm
 - 1. Read off intercepts of plane with axes in terms of *a*, *b*, *c*
 - 2. Take reciprocals of intercepts
 - 3. Reduce to smallest integer values
 - 4. Enclose in parentheses, no commas i.e., (*hkl*)

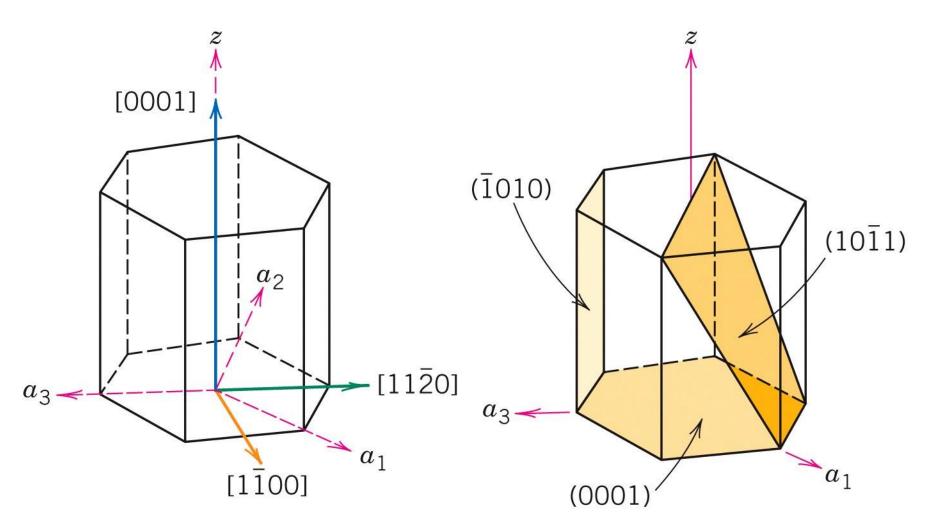
Chapter 3 - 23

Family of Planes {hkl}


Ex: $\{100\} = (100), (010), (001), (\bar{1}00), (0\bar{1}0), (00\bar{1})$

Chapter 3 - 2

Crystallographic Planes (HCP)


• In hexagonal unit cells the same idea is used

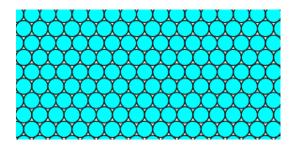
Adapted from Fig. 3.24(b), *Callister & Rethwisch 4e.*

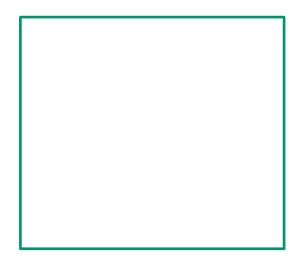
Ζ

Single crystal

The Royal Sceptre - Cullinan I

Imperial State Crown of Great Britain - Cullinan II




Single crystal Si

Grains

- Crystalline: a single crystallite in a material (grain)
 FCC, BCC, HCP,
- Polycrystalline: multiple single crystallites coexisting in a material
- Grain boundaries: boundaries existing between different crystallites

